In their embalming process, the ancient Egyptians used a mixture of substances, including methanol, which they obtained from the pyrolysis of wood. Pure methanol, however, was first isolated in 1661 by Robert Boyle, when he produced it via the distillation of buxus (boxwood).[42] It later became known as "pyroxylic spirit". In 1834, the French chemists Jean-Baptiste Dumas and Eugene Peligot determined its elemental composition.
They also introduced the word "methylène" to organic chemistry, forming it from Greek methy = "alcoholic liquid" + hȳlē = "woodland, forest", with a Greek language error: xylon = "wood as a material" would have been more suitable. "Methylène" designated a "radical" that was about 14% hydrogen by weight and contained one carbon atom. This would be CH2, but at the time carbon was thought to have an atomic weight only six times that of hydrogen, so they gave the formula as CH.[43] They then called wood alcohol (l'esprit de bois) "bihydrate de méthylène" (bihydrate because they thought the formula was C4H8O4 = (CH)4(H2O)2!). The term "methyl" was derived in about 1840 by back-formation from "methylene", and was then applied to describe "methyl alcohol". This was shortened to "methanol" in 1892 by the International Conference on Chemical Nomenclature.[44] The suffix -yl used in organic chemistry to form names of carbon groups, was extracted from the word "methyl".
In 1923, the German chemists Alwin Mittasch and Mathias Pier, working for Badische-Anilin & Soda-Fabrik (BASF), developed a means to convert synthesis gas (a mixture of carbon monoxide, carbon dioxide, and hydrogen) into methanol. US patent 1,569,775 was applied for on 4 Sep 1924 and issued on 12 January 1926; the process used a chromium and manganese oxide catalyst with extremely vigorous conditions—pressures ranging from 50 to 220 atm, and temperatures up to 450 °C. Modern methanol production has been made more efficient through use of catalysts (commonly copper) capable of operating at lower pressures. The modern low pressure methanol (LPM) was developed by ICI in the late 1960s US 3326956 with the technology now owned by Johnson Matthey, which is a leading licensor of methanol technology.
Methanol is one of the most heavily traded chemical commodities in the world, with an estimated global demand of around 27 to 29 million metric tons. In recent years, production capacity has expanded considerably, with new plants coming on-stream in South America, China and the Middle East, the latter based on access to abundant supplies of methane gas. Even though nameplate production capacity (coal-based) in China has grown significantly, operating rates are estimated to be as low as 50 to 60%. No new production capacity is scheduled to come on-stream until 2015.
The main applications for methanol are the production of formaldehyde (used in construction and wooden boarding), acetic acid (basis for a.o. PET-bottles), MTBE (fuel component and replacement for the very volatile diethyl ether) and more recently for the formation of methyl esters in the production of bio-diesel. In China, demand is expected to grow exponentially, not only caused by a growing internal market of the traditional applications, but accelerated by new applications, such as direct blending (with gasoline), Methanol-To-Olefins (e.g. propylene) and DME. Methanol can also be used to produce gasoline.
The use of methanol as a motor fuel received attention during the oil crises of the 1970s due to its availability, low cost, and environmental benefits. By the mid-1990s, over 20,000 methanol "flexible fuel vehicles" capable of operating on methanol or gasoline were introduced in the U.S. In addition, low levels of methanol were blended in gasoline fuels sold in Europe during much of the 1980s and early-1990s. Automakers stopped building methanol FFVs by the late-1990s, switching their attention to ethanol-fueled vehicles. While the methanol FFV program was a technical success, rising methanol pricing in the mid- to late-1990s during a period of slumping gasoline pump prices diminished the interest in methanol fuels.
In 2006, astronomers using the MERLIN array of radio telescopes at Jodrell Bank Observatory discovered a large cloud of methanol in space, 288 billion miles across.[47][48] In 2016, astronomers detected methyl alcohol in a planet-forming disc around the young star TW Hydrae using ALMA radio telescope.